Random Processes," Journal of the Acoustical Society of America, Vol.

49, No. 1, Jan. 1971, pp. 556–583.

³ Bolotin, V. V., "Nonconservative Problem of the Theory of Elastic Stability," Pergamon Press, New York, 1963, pp. 280–285.

⁴ Chu, H. and Herrman, G., "Influence of Large Amplitude on Free Flexural Vibration of Rectangular Elastic Plates," Journal of Applied Mechanics, Vol. 23, No. 4, Dec. 1956, pp. 532-540.

Bull, M. K., "Wall-Pressure Fluctuation Associated with Subsonic Turbulent Boundary Layer Flow," Journal of Fluid Mechanics, Vol. 28, Pt. 4, 1967, pp. 719–754.

⁶ Bull, M. K., Wilby, J. F., and Blackman, D. R., "Wall Pressure Fluctuation in Boundary Layer Flow and Response of Simple Structure to Random Pressure Fields," A.A.S.U. Rept. 243, Univ. of Southampton, 1963, pp. 1-28.

⁷ Strawderman, W. A., "Turbulent-Induced Plate Vibrations, An Evaluation of Finite and Infinite Plate Models," *Journal of the*

Acoustical Society of America, 1969, pp. 1294-1307.

Maestrello, L., "Measurement and Analysis of the Response Field of Turbulent Boundary Layer Excited Panels," Journal of Sound and Vibration, Vol. 2, 1965, pp. 270-292.

JANUARY 1972

AIAA JOURNAL

VOL. 10, NO. 1

Hypersonic Turbulent Skin-Friction and Boundary-Layer **Profiles on Nonadiabatic Flat Plates**

EDWARD J. HOPKINS,* EARL R. KEENER,† AND THOMAS E. POLEK† NASA Ames Research Center, Moffett Field, Calif.

AND

HARRY A. DWYER‡ University of California, Davis, Calif.

Direct measurements of skin-friction and velocity profiles were made for $M_e=5.9$ –7.8 at $T_w/T_{aw}=0.3$ and 0.5. The Van Driest (II), Coles, and finite-difference theories predicted skin friction within about $\pm 10\%$. The theories of Sommer and Short, and Spalding and Chi underpredicted the skin friction by considerably more than 10%. In general, Van Driest's theory also gave the most satisfactory transformations of the velocity profiles onto the incompressible law-of-the-wall and velocity-defect curves.

Nomenclature

 A_1B_1 = constants used in the Van Driest formulas for the skin-friction transformations, see Table 2

= constants used in the Van Driest formulas for the velocity-A, Bprofile transformations, see Table 3

= local skin-friction coefficient, τ_w/q_e

= shape factor, δ^*/θ Ħ

= Mach number M

N = exponent defined by $U/U_e = (y/\delta)^{1/N}$

= pressure

= dynamic pressure

= temperature recovery factor for turbulent boundary-layer

= Reynolds number based on momentum thickness, $\rho_e U_e \theta / \mu_e$

= absolute temperature

= velocity

= friction velocity, $(\tau_w/\rho)^{1/2}$

= distance normal to surface from pitot centerline

= distance normal to surface

= boundary-layer thickness determined by extrapolation to $U/U_e = 1.0$ the measured velocity profile in the power-law form, $\log U/U_e$ vs $\log y$

= displacement thickness $\int_{0}^{\delta_{e}} \left[1 - (\rho U/\rho_{e} U_{e})\right] dy$ δ^*

= boundary-layer momentum thickness, θ $\int_{0}^{\delta_{e}} \left(\rho U/\rho_{e} U_{e} \left[1 - \left(U/U_{e}\right)\right] dy$

Presented as Paper 71-167 at the AIAA 9th Aerospace Sciences Meeting, New York, January 25-27, 1971; submitted February 16, 1971; revision received July 8, 1971.

Index categories: Boundary Layers and Convective Heat Transfer— Turbulent; Supersonic and Hypersonic Flow.

Research Scientist. Associate Fellow AIAA.

† Research Scientist. Member AIAA.

‡ Associate Professor, Department of Mechanical Engineering. Member AIAA.

= coefficient of viscosity determined from Keyes' formula¹

= kinematic viscosity

= mass density Baronti-Libby viscosity function defined in Table 3

= local shear stress

Subscripts

= adiabatic wall

BL= Baronti-Libby

C= Coles

= boundary-layer edge

= experimental

= edge of boundary-layer sublayer, see Table 3

= total

THE = theoretical

= wall

= freestream conditions

= conditions just downstream of a shock wave

Superscripts

= incompressible or variable transformed to equivalent constant property case

= reference condition

Introduction

N accurate theory for predicting hypersonic turbulent skin A friction is required for meaningful design studies of hypersonic vehicles. Unfortunately, all turbulent theories contain some empiricism and are dependent, therefore, upon the accuracy of the experimental data which often show large differences, depending upon the measuring technique. Spalding and Chi found that their semiempirical theory² based on skin-friction data from 22 sources (treated without discrimination regarding measuring technique) gave the most accurate skin-friction prediction. In a more recent study by Hopkins et al.,³ an analysis based on hypersonic data directly measured on cooled flat plates $(T_w/T_{aw} \ge 0.3)$ by skin-friction balances indicated that the Coles⁴

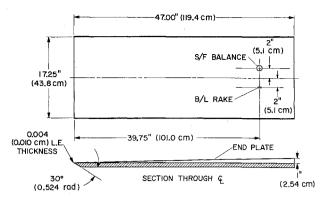


Fig. 1 Dimensions of flat plate and instrument locations.

and Van Driest (II)⁵ theories gave predictions of skin friction within $\pm 10\%$. The other theories analyzed, Spalding and Chi² and Sommer and Short,⁶ underpredicted the skin friction by 20-30%. The latter analysis was based on measured Re_{θ} 's assuming C_f to be a unique function of Re_{θ} for fully developed turbulent flow.

The present study was undertaken to provide additional, directly measured, skin-friction data to evaluate further the theories considered in Ref. 3 at almost double the Reynolds number and at Mach numbers between 6 and 8. In addition, these data are compared with predictions from a finite-difference theory recently programed by H. Dwyer as described in the Appendix. Part of the study is also devoted to the evaluation of theories (wall reference temperature, Baronti-Libby⁷ and Van Driest⁸) for transforming the measured velocity profiles onto the incompressible law-of-the-wall and velocity-defect curves.

Apparatus and Test

The experimental investigation was conducted in air in the Ames 3.5-Foot Hypersonic Wind Tunnel at a freestream Mach number of 7.4. A sharp-edged flat plate, supported from its back side, was injected into the airstream after equilibrium flow conditions were attained. A skin-friction balance and a boundary-layer Pitot rake were mounted on the plate as shown in Fig. 1. Dimensions of the rake are given in Fig. 2. The skin friction was measured with self-nulling floating-element balances. Two different balances having different sensitivities were used for the present investigation. Balance B was designed for 0.5 g/cm² and balance C was designed for 1 g/cm² for a 5v output. Some past results³ from balance A, designed for 1 g/cm², are also shown at Mach 6.9.

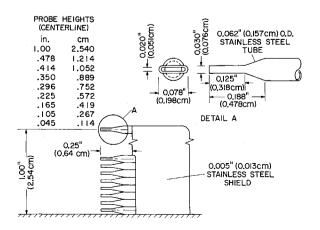


Fig. 2 Dimensions of boundary-layer rake.

The model was injected into the airstream at angles of attack of 9.3° , 6.2° , 3.1° , 0° , and -2.1° , which resulted in local Mach numbers at the measuring station of 5.9, 6.4, 6.9, 7.4, and 7.8, respectively. The local unit Reynolds number varied from about $2{\text -}38$ million per meter. No boundary-layer trips were used. Testing time was about 3 sec during which the model surface was nearly isothermal. The flow conditions are summarized in Table 1.

Data Reduction

Local flow conditions at the edge of the boundary layer at the survey station were calculated from measured $p_{t,\infty}$, $T_{t,\infty}$, M_{∞} , and $(p_{t,2})_e$ since reliable surface pressures were not available for most of the test. The static pressure (p_e) on the plate was calculated from $p_{t,\infty}$, M_{∞} , and $(p_{t,2})_e$ by substituting for M_e in the inviscid oblique-shock relations (Eq. 157) of Ref. 9 from the dynamic pressure equation $q_e = \left[q_e/(p_{t,2})_e\right](p_{t,2})_e = 0.7p_eM_e^2$. For $5 < M_e < 10$ and $T_{t,e} < 1111^\circ \text{K}$, the ratio $q_e/(p_{t,2})_e = 0.54$ is within 1% of the correct thermally perfect value. From this calculated p_e , M_e was calculated from $p_e/(p_{t,2})_e$. This procedure gave calculated p_e 's which generally agreed with the limited number p_e 's that were measured. Real gas corrections as given in the charts of Ref. 9 were used in the calculations.

Local velocity and density ratios (U/U_e) and $\rho/\rho_e)$ were calculated from $p_{t,2}/p_e$ from the boundary-layer Pitot rake and an assumed Crocco temperature distribution $(U/U_e) = (T_t - T_w)/T_{t,e} - T_w)$. Such a temperature distribution generally exists on nonadiabatic wall flat plates. The usual assumption of a constant static pressure through the boundary layer was made. Other details are given in Ref. 11. For the velocity-profile studies the pressures from the Pitot tube outside the boundary layer (y=2.5 cm) were taken to be $(p_{t,2})_e$. For θ and δ^* the boundary-layer edge (δ_e) was taken at $U/U_e = 1.0$. The edge of the boundary layer (δ) for the velocity-defect transformations [Eqs. (17, 24, and 30)] was determined by extrapolation to $U/U_e = 1.0$ the measured velocity profile in the power-law form, $\log U/U_e$ vs $\log y$.

Accuracy

Estimated probable errors for the recorded and calculated quantities are as follows: M_e , $\pm 3\%$; $p_{t,2}$, p_e , T_w , $\pm 2\%$; p_e , T_t , τ_w , θ , $\pm 5\%$; Re_θ , $\pm 8\%$; y, ± 0.013 cm.

Theories

A brief description of the four skin-friction transformation theories (Sommer and Short, ⁶ Spalding and Chi, ² Van Driest (II), ⁵ and Coles ⁴) chosen for the present evaluation is presented in Ref. 11. The Kármán-Schoenherr incompressible formula relating $\bar{C}_f(\bar{R}e_\theta)$ was chosen for consistency for predicting the compressible C_f from each of these theories. Transformation functions for these theories are summarized in Table 2. The skin friction also was predicted by the finite-difference theory programed by Dwyer as described in the Appendix.

The measured velocity profiles were transformed to the incompressible plane by the wall reference temperature method, by the Baronti-Libby method⁷ (an extension to Coles' corresponding-station method) and by the Van Driest method.⁸ Either the Prandtl or von Kármán mixing-length formulations give the same transformation functions for the law of the wall by the Van Driest method; therefore, it is not necessary to identify these formulations by a (I) or (II) as for the skin friction. Results are presented for the transformed velocity-defect law and the transformed law of the wall. Transformation functions for each of these methods are given in Table 3. The measured velocity profiles, the power-law velocity exponent (N) and the shape factor (H) are also compared with those calculated by the finite-difference program.

Table 1 Flow conditions and skin-friction data

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Meyer m Certain Lest of the control of		S/F	
S.44 2.75 1063 139 315 0.32 15.5 7.6 390 187 1400 1.03 1.03 1.04 1.05 1.04 1.05	$C_{\rm f} \times 10^3$	balance	
5.88 7.11 129 149 302 0.30 44.7 21.4 1077 516 1422 3.32 5.89 10.64 1146 152 314 0.29 70.4 33.7 1709 818 1457 5.79 5.99 14.63 1127 144 310 0.29 88.7 42.2 2297 1061 1457 7.61 5.99 14.63 1122 144 310 0.29 88.7 42.5 2293 1081 1447 7.61 7.61 15.6 7.61 105.1 1181 142 312 106.0 10.7 105.1 106.1 1445 9.41 143 3.2 106.1 1.62 9.6 142 3.3 1444 9.41 142 3.4 9.44 9.44 1.42 3.8 1.42 9.4 1.42 3.8 1.42 3.4 1.42 3.4 1.42 3.4 1.4 1.4 1.4 1.4 1.4	+		
5.88	1.30	В	
5.98 10.64 1146 152 314 0.29 70.4 33.7 1709 818 1467 7.61	1.56 1.54	B C	
5.99	1.34	C	
5.99	1.26	c	
6.06 18.57 1109 140 322 0.31 105.0 50.3 2996 1291 1435 9.87 6.05 18.53 110 142 313 0.32 107.9 51.7 2764 1323 144 9.41 6.27 6.90 1079 128 317 0.31 13.0 16.0 921 441 1421 3.47 6.13 11.16 1069 124 313 0.31 51.5 24.6 1442 855 498 1412 3.57 6.42 13.13 1136 123 383 0.38 63.2 39.3 1927 498 1412 3.57 7.12 6.48 1029 97 24 0.34 18.4 8.8 664 313 140 5.2 7.02 6.84 129 97 107 0.34 18.4 8.8 664 313 140 5.2 141 5.2 144 5.2 </td <td>1.21</td> <td>c</td>	1.21	c	
6.04	1.16	Č	
6.27	1,17	Ċ	
6.27	1.14	В	
6.33 11.16 1069 124 313 0.31 51.5 24.6 1446 692 1415 5.37 6.42 13.12 1156 129 328 0.31 63.3 30.3 1827 875 1465 7.08 6.39 16.42 1152 133 317 0.29 82.6 38.96 2360 1130 1476 8.98 7.12 6.46 1028 97 324 0.34 18.4 8.8 654 313 1401 2.53 7.09 9.99 1089 103 326 0.32 31.6 15.1 1112 532 1446 5.20 6.91 2.19 1045 104 312 0.32 7.2 3.4 238 114 1410 0.90 6.86 5.86 1071 108 309 0.31 20.3 9.7 670 321 1429 2.57 6.83 90 1079 110 303 0.30 34.1 16.3 1111 532 1443 4.18 6.72 9.04 1134 119 317 0.30 37.1 17.8 1172 561 1471 4.41 6.83 1.497 1103 109 307 0.30 37.1 17.8 1172 561 1471 4.41 7.40 4.89 1071 94 312 0.32 4.5 2.2 175 845 1455 6.99 6.86 5.86 1.071 108 312 0.32 4.5 2.2 175 846 1455 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 4145 8.5 6.87 1.164 1122 113 302 0.28 4.5 2.2 175 84 4145 8.5 7.39 4.89 1071 94 312 0.31 1.30 7.45 4.89 1071 94 312 0.31 1.30 7.46 1.83 1039 99 314 0.32 4.5 2.2 175 84 7.34 7.73 1091 97 311 0.30 23.5 11.3 864 414 442 3.40 7.31 12.85 1099 99 316 0.31 2.5 6.0 407 228 1453 1.74 7.32 1.441 1102 99 316 0.31 2.5 3.7 1.0 4 1.5 7.35 1.441 1102 99 316 0.31 3.6 1.7 6.1 1.7 4.5 7.35 1.441 1102 99 316 0.31 3.6 1.7 6.1 1.7 5.0 7.75 4.12 1088 87 305 0.30 9.3 4.4 1.9 5.9 7.77 4.144 1102 99 316 0.31 3.6 5.7 7.4 647 3.1 4.40 7.31 1.285 1099 93 36 0.31 3.6 5.7 7.4 647 3.1 4.40 7.32 1.441 1102 99 308 0.29 2.0 3.9 7.7 7.6 372 4.40 7.32 1.441 1.10 906 0.29 2.0 1.10 8.6 4.14 4.14 7.36 5.79 7.79 7.79 7.79 7.79 7.79	1.42	В	
6.42 13.12 1156 129 393 0.30 29.6 14.2 853 408 1412 3.23 6.39 16.42 1152 133 317 0.29 82.6 39.6 2360 1130 1476 8.98 7.12 6.48 1028 97 324 0.34 18.4 8.8 654 313 1401 2.53 7.09 9.99 109 103 336 0.32 31.6 15.1 1112 532 1446 5.20 6.91 2.19 1045 104 312 0.32 7.2 3.4 239 114 1410 0.90 6.86 5.86 1071 108 309 0.31 20.3 9.7 670 321 1442 2.57 6.83 9.50 1079 110 303 0.30 34.1 16.3 1111 532 1434 4.18 6.93 14.97 1103 109 307 0.30 52.5 25.1 1765 845 1471 4.41 6.93 14.97 1103 109 307 0.30 52.5 25.1 1765 845 1453 6.99 6.87 11.64 1122 113 302 0.29 43.4 20.8 1432 666 1465 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.90 1071 94 312 0.31 12.5 6.0 477 228 1437 1.94 7.40 4.58 1092 96 304 0.30 23.5 11.3 864 414 1462 3.40 7.31 1.44 1102 39 37 31 0.30 23.5 11.3 864 414 1462 3.40 7.31 1.44 1102 39 316 0.31 3.6 3.7 1.13 864 414 1462 3.40 7.31 1.44 1102 39 316 0.31 3.6 3.7 1.13 864 414 1462 3.40 7.31 1.44 1102 39 316 0.31 3.6 3.7 1.13 864 414 1462 3.40 7.32 1.44 1102 39 316 0.31 3.6 3.7 1.1 3.7 660 1467 5.20 7.45 1.86 103 39 300 0.28 33.7 1.5 1.3 864 414 1462 3.40 7.31 1.285 1099 39 316 0.31 3.6 3.7 1.5 1.3 864 414 4462 3.40 7.32 1.44 1.102 39 316 0.31 3.5 3.7 1.5 1.5 3.0 7.42 1.18 1.18 1.18 1.18 1.3 3.3 3.3 1.5 7.45 1.44 1.102 39 316 0.31 3.5 3.7 1.5 1.7 7.47 1.48 1.18 3.9 3.00 0.28 3.3 1.1 3.1 3.4 3.5 7.49 1.49 1.49 3.1 3.00 0.29 3.3 3.7 1.5 3.3 3.4 3.4 7.40 1.40 1.40 1.40 1.40 1.40 1.40 7.31 1.44 1.10 3.9	1.23	В	
6.42 13.12 1156 129 328 0.31 63.3 30.5 2860 1130 1476 8.98 7.12 6.48 1028 97 324 0.34 18.4 8.8 664 313 1401 2.53 7.09 9.99 1089 1089 103 326 0.32 31.6 15.1 1112 532 1446 5.20 6.91 2.19 1045 104 312 0.32 31.6 15.1 1112 532 1446 5.20 6.85 5.86 1071 108 309 0.31 20.3 9.7 670 321 1429 2.57 6.85 5.86 1071 108 309 0.31 20.3 9.7 670 321 1429 2.57 6.87 1.4197 110 309 0.31 2.0 29 1434 418 418 4.8 4.8 4.8 4.8 4.8 4.8 <td>1.56</td> <td>В</td>	1.56	В	
6.38	1.10	C	
7.09 9.99 1089 1083 326 0.32 31.6 15.1 1112 532 1446 5.20 6.86 5.86 1071 108 309 0.31 20.3 9.7 670 321 1429 2.57 6.83 9.50 1079 110 303 0.30 34.1 16.3 1111 532 1434 4.18 6.93 14.97 1103 109 307 0.30 37.1 17.8 1172 561 1471 4.1 6.93 14.97 1103 109 307 0.30 52.5 25.1 1765 94.5 1453 6.99 6.87 11.64 1122 113 392 0.29 43.4 29.8 1432 686 1465 5.79 7.45 1.83 1093 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.4 132 0.	1.04	С	
7.09 9.99 1085 1045 104 312 0.32 31.6 15.1 1112 532 1446 5.20 6.86 5.86 1071 108 309 0.31 20.3 9.7 670 321 1429 2.57 6.83 9.90 1079 110 308 0.30 34.1 16.3 1111 532 1449 1.64 4.18 6.93 14.97 1103 109 0.30 52.5 25.1 1765 845 1457 4.41 4.42 2.2 175 8.4 1415 0.82 2.59 4.4 4.5 2.2 175 8.4 1415 0.83 1.43 1.43 1.43 1.43 1.43 1.43 1.43 </td <td>1.56</td> <td>Α</td>	1.56	Α	
6.91 2.19 1045 1041 312 0.32 7.2 3.4 239 114 1410 0.90 0.31 20.3 9.7 670 321 1429 2.57 6.83 9.50 1079 110 309 0.31 20.3 9.7 670 321 1429 2.57 6.83 9.50 1079 1103 309 0.30 32.1 16.3 1111 532 1434 4.18 6.93 1.497 1103 109 307 0.30 52.5 25.1 1765 845 1453 6.99 6.88 5.37 1108 112 303 0.29 143.4 20.8 1432 686 1465 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 1.78 1.49 1.415 0.83 1.78 1.49 1.435 1.40 1.83 1.40 1.83 1.41 1.415 0.83	1.22	A	
6.86 5.86 1071 108 309 0.31 20.3 9.7 670 321 1429 2.57 6.83 9.50 1079 110 303 303 34.1 116.3 1111 532 1434 4.18 6.93 1.497 1103 119 307 0.30 52.5 25.1 11765 845 1453 6.99 6.88 5.37 1108 112 303 0.29 19.5 9.3 646 309 1455 2.59 6.87 11.64 1122 113 392 0.29 43.4 20.8 1432 686 1465 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.90 1071 94 312 0.31 13.0 6.2 496 237 1437 1.94 7.39 1.6 1.0 1.3	0.80	В	
6.83 9.00 1079 110 303 0.30 34.1 16.3 1111 532 1494 4.18 6.93 14.97 1103 109 307 0.30 35.1 1765 845 1453 6.99 6.88 5.37 1108 112 303 0.29 19.5 9.3 648 309 1455 2.59 6.87 11.64 1122 113 302 0.29 43.4 20.8 1432 686 1465 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.90 1071 94 312 0.31 13.0 6.2 496 237 1437 1.94 7.40 4.58 1.022 304 0.30 12.5 6.0 477 228 1433 1.73 7.24 7.51 1086 102 311 0.30 <td>1.48</td> <td>В</td>	1.48	В	
6.72 9.04 1134 119 317 0.30 52.5 25.1 1765 845 1453 6.98 6.88 5.37 1108 112 303 0.29 19.5 9.3 646 309 1455 2.59 6.87 11.64 1122 113 392 0.29 43.4 20.8 1432 686 1465 5.79 7.45 11.64 1122 113 392 0.29 43.4 20.8 1432 686 1465 5.79 7.45 11.64 1122 113 392 0.29 43.4 20.8 1432 686 1465 5.79 7.45 11.64 1122 113 392 0.29 43.4 20.8 1432 686 1465 5.79 7.42 11.6 1071 43 312 0.31 13.5 6.0 477 228 1453 1.78 7.33 10.9 10.94 1094	1.24	В	
6.88 5.37 1108 1122 113 302 0.29 43.4 20.8 1432 686 1465 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.90 1071 94 312 0.31 13.0 6.2 496 237 1437 1.94 7.34 7.73 1091 97 311 0.30 21.6 6.0 477 228 1453 1.78 7.34 7.73 1091 97 311 0.30 21.6 6.0 477 228 1453 1.79 7.32 1.44 1.80 1133 99 311 0.31 29.3 14.0 1099 526 1447 4.40 7.31 1.2.85 1099 9 316 0.31 36.8 17.6 1379 660 1457 5.20 7.32 14.41	1.18	В	
6.87 11.64 1122 113 302 0.29 43.4 20.8 1432 686 1465 5.79 7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.90 1071 94 312 0.31 13.0 6.2 496 237 1437 1.93 7.40 4.58 1092 96 304 0.30 12.5 6.0 477 228 1453 1.78 7.34 7.73 1091 97 311 0.30 23.5 11.3 864 414 1462 3.40 7.32 10.49 1084 97 311 0.30 23.5 11.3 864 414 1462 3.40 7.31 12.85 1099 93 316 0.31 36.8 17.6 1379 660 1457 5.20 7.42 11.80 1133 308	1.11	В	
7.45 1.83 1039 90 314 0.32 4.5 2.2 175 84 1415 0.83 7.39 4.90 1071 94 312 0.31 13.0 6.2 496 237 1437 1.94 7.40 4.88 1092 96 304 0.30 12.5 6.0 477 228 1453 1.79 7.34 7.73 1091 97 311 0.30 22.16 10.4 815 390 1411 3.16 7.24 7.81 1086 102 311 0.31 29.3 14.0 1099 526 1447 4,40 7.33 10.49 1084 97 331 0.31 28.3 71.6 1379 660 1457 5.20 7.32 1.44 1102 99 318 0.31 41.4 19.8 1552 743 1459 5.98 7.35 9.54 1131 101	1.49	С	
7.39 4.90 1071 94 312 0.31 13.0 6.2 496 237 1437 1.94 7.40 4.58 1092 96 304 0.30 12.5 6.0 477 228 1453 1.78 7.34 7.73 1091 97 311 0.30 21.6 10.4 815 390 1411 3.16 7.33 10.49 1084 97 311 0.31 29.3 14.0 1099 526 1447 4.40 7.31 12.85 1099 99 316 0.31 36.8 17.6 1379 660 1457 5.20 7.42 11.80 1133 99 300 0.28 33.7 16.1 198 621 1447 4.40 7.32 14.41 1102 99 318 0.31 41.4 19.8 1552 743 1459 5.98 7.38 7.09 1124 99 <td>1.09</td> <td>С</td>	1.09	С	
7.39 4.90 1071 94 312 0.31 13.0 6.2 486 237 1437 1.94 7.40 4.58 1092 96 304 0.30 12.5 6.0 477 228 1453 1.78 7.34 7.73 1091 97 311 0.30 23.5 11.3 864 414 1462 3.40 7.33 10.49 1084 97 311 0.31 23.3 14.0 1099 526 1447 4.40 7.31 12.85 1099 99 316 0.31 36.8 17.6 1379 660 1457 5.20 7.42 11.80 1133 99 300 0.28 33.7 16.1 198 621 1483 5.42 7.32 14.41 1102 99 318 0.31 41.4 19.8 1552 743 1459 5.98 7.38 7.54 1131 101 <td>0.64</td> <td>В</td>	0.64	В	
7.34 7.73 1091 97 311 0.30 21.6 10.4 815 390 1411 3.16 7.24 7.81 1086 102 311 0.30 23.5 11.3 864 414 1462 3.40 7.33 10.49 1084 97 311 0.31 29.3 14.0 1099 526 1447 4.40 7.31 12.85 1099 99 316 0.31 36.8 17.6 1379 660 1457 5.20 7.42 11.80 1133 99 300 0.28 33.7 16.1 1298 621 1483 5.42 7.32 14.41 1102 99 318 0.31 41.4 19.8 1552 743 1459 5.98 7.36 9.54 1131 101 306 0.29 28.0 13.4 1062 508 1481 4.56 7.36 12.39 1111 <td< td=""><td>1.46</td><td>В</td></td<>	1.46	В	
7.24 7.81 1066 102 311 0.30 23.5 11.3 864 414 1462 3.40 7.33 10.49 1084 97 311 0.31 29.3 14.0 1099 526 1447 4.40 7.31 12.85 1099 99 316 0.31 36.8 17.6 1379 660 1467 5.20 7.32 11.80 1133 99 300 0.28 33.7 16.1 1298 621 1483 5.42 7.32 14.41 1102 99 308 0.29 20.3 9.7 776 372 1476 3.46 7.32 9.54 1131 101 306 0.29 28.0 13.4 1062 508 1481 4.56 7.32 9.54 1418 100 307 0.29 36.0 17.0 1351 647 1466 5.95 7.78 4.12 1088	1.40	В	
7.33 10.49 1084 97 311 0.31 29.3 14.0 1099 526 1447 4.40 7.31 12.85 1099 99 316 0.31 36.8 17.6 1379 660 1457 5.20 7.32 14.41 1102 99 318 0.31 41.4 19.8 1552 743 1459 5.98 7.39 7.99 1124 99 308 0.29 20.3 9.7 776 372 1476 3.46 7.36 9.54 1131 101 306 0.29 28.0 13.4 1062 508 1481 4.56 7.32 12.39 1111 100 307 0.29 36.0 17.0 1351 647 1466 5.95 7:78 4.12 1088 87 305 0.30 9.3 4.4 392 188 1456 1.79 7:78 4.12 1088 87<	1.26	В	
7.31 12.85 1099 99 316 0.31 36.8 17.6 1379 660 1457 5.20 7.42 11.80 1133 99 300 0.28 33.7 16.1 1298 621 1483 5.42 7.39 7.09 1124 99 308 0.29 20.3 9.7 776 372 1476 3.46 7.36 9.54 1131 101 306 0.29 28.0 13.4 1062 508 1481 4.56 7.32 12.39 1111 100 307 0.29 36.0 17.0 1351 647 1466 5.95 7:78 4.12 1088 87 305 0.30 9.3 4.4 392 188 1456 1.79 7:78 4.12 1088 87 305 0.30 9.3 4.4 392 188 1456 1.79 7:72 6.52 1108 91	1.20	В	
$ \begin{array}{c} 7.42 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.32 \\ 7.33 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.39 \\ 7.30 \\ 7.32 \\ 7.30 \\ 7.32 \\ 7$	1.16	В	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.09	В	
7.38 7.09 1124 99 308 0.29 28.0 13.4 1062 508 1481 4.56 7.36 9.54 1131 101 306 0.29 28.0 13.4 1062 508 1481 4.56 7.32 12.39 1111 100 307 0.29 36.0 17.0 1351 647 1466 5.95 7:78 4.12 1088 87 305 0.30 9.3 4.4 392 188 1456 1.79 7.72 6.52 1108 91 314 0.30 15.5 7.4 647 310 1470 3.99 7.71 8.54 1125 92 311 0.30 20.9 10.0 870 417 1482 4.21 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87 <td>1.11</td> <td>В</td>	1.11	В	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.08	В	
7.32 12.39 1111 100 307 0.29 36.0 17.0 1351 647 1466 5.95 7:78 4.12 1088 87 305 0.30 9.3 4.4 392 188 1456 1.79 7.72 6.52 1108 91 314 0.30 15.5 7.4 647 310 1470 2.91 7.69 8.85 1109 91 324 0.31 21.4 10.2 885 424 1470 3.99 7.71 8.54 1125 92 311 0.30 20.9 10.0 870 417 1482 4.21 7.67 10.91 1116 92 309 0.30 26.9 12.9 1107 530 1475 5.03 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87	1.27	C C	
7:78 4.12 1088 87 305 0.30 9.3 4.4 392 188 1456 1.79 7.72 6.52 1108 91 314 0.30 15.5 7.4 647 310 1470 2.91 7.69 8.85 1109 91 324 0.31 21.4 10.2 885 424 1470 3.99 7.71 8.54 1125 92 311 0.30 20.9 10.0 870 417 1482 4.21 7.67 10.91 1116 92 309 0.30 26.9 12.9 1107 530 1475 5.03 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 31.85 705 87	1.17	C	
7.72 6.52 1108 91 314 0.30 15.5 7.4 647 310 1470 2.91 7.69 8.85 1109 91 324 0.31 21.4 10.2 885 424 1470 3.99 7.71 8.54 1125 92 311 0.30 20.9 10.0 870 417 1482 4.21 7.67 10.91 1116 92 309 0.30 26.9 12.9 1107 530 1475 5.03 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 24.26 701 87 312 0.49 69.8 33.4 1768 847 1123 12.32 6.02 31.85 75 87 <td></td> <td></td>			
7.69 8.85 1109 91 324 0.31 21.4 10.2 885 424 1470 3.99 7.71 8.54 1125 92 311 0.30 20.9 10.0 870 417 1482 4.21 7.67 10.91 1116 92 309 0.30 26.9 12.9 1107 530 1475 5.03 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 31.85 705 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 31.1 15.1 913 437 1139 7.02 6.43 13.68 711 78<	0.87	В	
7.71 8.54 1125 92 311 0.30 20.9 10.0 870 417 1482 4.21 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1475 5.03 6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 24.26 701 87 312 0.49 69.8 33.4 1768 847 1123 12.32 6.02 24.26 701 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 31.1 15.1 913 437 1139 7.02 6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 78<	1.28	В	
7.67 10.91 1116 92 309 0.30 26.9 12.9 1107 530 1475 5.03 7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 24.26 701 87 312 0.49 69.8 33.4 1768 847 1123 12.32 6.02 31.85 705 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 31.1 15.1 913 437 1139 7.02 6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 7	1.19	В	
7.69 10.79 1134 93 307 0.29 27.1 13.0 1119 536 1488 5.64 6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 24.26 701 87 312 0.49 69.8 33.4 1768 847 1123 12.32 6.02 31.85 705 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 112.5 53.9 2878 1378 1141 18.13 6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.45 26.87 722 <	1.17	B B	
6.01 15.07 701 87 308 0.48 43.5 20.8 1099 526 1122 7.60 6.02 24.26 701 87 312 0.49 69.8 33.4 1768 847 1123 12.32 6.02 31.85 705 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 112.5 53.9 2878 1378 1141 18.13 6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 78 307 0.47 31.1 15.1 913 437 1140 10.74 6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 <t< td=""><td>1.10</td><td>C</td></t<>	1.10	C	
6.02 24.26 701 87 312 0.49 69.8 33.4 1768 847 1123 12.32 6.02 31.85 705 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 112.5 53.9 2878 1378 1141 18.13 6.43 13.68 711 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.42 21.95 712 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.			
6.02 31.85 705 87 307 0.48 92.1 44.1 2337 1119 1126 15.80 6.04 37.99 722 89 310 0.47 112.5 53.9 2878 1378 1141 18.13 6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.16 689 <	1.14	C	
6.04 37.99 722 89 310 0.47 112.5 53.9 2878 1378 1141 18.13 6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689	1.01	c	
6.43 13.68 711 78 307 0.47 31.1 15.1 913 437 1139 7.02 6.42 21.95 712 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 </td <td>0.96 0.92</td> <td>C C</td>	0.96 0.92	C C	
6.42 21.95 712 78 307 0.47 50.9 24.4 1471 704 1140 10.74 6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 </td <td>- 0.02</td> <td></td>	- 0.02		
6.45 26.87 722 79 303 0.46 62.7 30.0 1829 876 1149 13.53 6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 25.20 709 69 <td>1.08</td> <td>С</td>	1.08	С	
6.41 37.28 697 77 311 0.49 84.3 40.4 2427 1162 1127 17.45 6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 25.20 709 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69 <td>0.93</td> <td>С</td>	0.93	С	
6.83 10.14 764 76 312 0.45 21.0 10.1 686 328 1191 4.70 6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 30.84 718 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69	0.89	C	
6.79 14.36 684 68 318 0.51 25.5 12.2 824 395 1123 6.90 6.79 14.16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 25.20 709 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69 307 0.47 55.4 26.5 1853 887 1154 13.75 7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59	0.83	С	
6.79 14,16 689 69 318 0.51 25.5 12.2 822 394 1127 8.86 6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 25.20 709 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69 307 0.47 55.4 26.5 1853 887 1154 13.75 7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61	1.23	A	
6.91 12.39 688 67 306 0.49 20.8 10.0 696 333 1128 6.24 6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 25.20 709 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69 307 0.47 55.4 26.5 1853 887 1154 13.75 7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	1.06	A.	
6.91 19.80 692 67 308 0.49 33.5 16.0 1121 537 1131 9.22 6.91 25.20 709 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69 307 0.47 55.4 26.5 1853 887 1154 13.75 7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	1.00	A	
6.91 25.20 709 69 304 0.47 44.5 21.3 1487 712 1146 11.45 6.91 30.84 718 69 307 0.47 55.4 26.5 1853 887 1154 13.75 7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	1.03	C	
6.91 30.84 718 69 307 0.47 55.4 26.5 1853 887 1154 13.75 7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	0.90	C	
7.45 10.25 692 58 305 0.49 13.1 6.3 509 244 1139 4.91 7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	0.83 0.80	C C	
7.43 16.01 704 59 303 0.48 21.3 10.2 822 394 1149 7.56 7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	-		
7.46 19.89 722 61 297 0.45 27.1 13.0 1055 505 1165 9.09	1.04	С	
	0.89	С	
	0.85 0.79	C	
7.80 24.05 688 53 306 0.49 25.7 12.3 1093 523 1140 11.16	0.76	С	

Results and Discussion

Skin Friction

In Fig. 3, the skin friction is presented as a function of momentum thickness Reynolds number at several local Mach numbers for two different wall-temperature ratios ($T_{\rm w}/T_{\rm aw}=0.3$ and 0.5). For $T_{\rm w}/T_{\rm aw}=0.3$ the points obtained at the lowest Reynolds numbers appear to be in transitional flow. The Reynolds number for the end of transition appears to be

generally below 3×10^3 . At all Mach numbers the data generally favor predictions from either the Van Driest (II) or Coles theory. Spalding and Chi's theory considerably underpredicted the data at all Mach numbers; whereas, Sommer and Short's theory gave large underpredictions only at the higher Mach numbers. In general, the agreement between theory and experiment at $T_w/T_{aw}=0.5$ is similar to that for $T_w/T_{aw}=0.3$. Results from the three balances agree with each other within the measuring accuracy of about $\pm5\%$.

Table 2 Transformation functions for skin friction

	Sommer and Short ⁶	Van Driest (II) ⁹	Coles ⁴	Spalding and Chi ²
<u>C</u> f Cf	where	1) $ \frac{r (0.2 M_e^2)}{\left[\sin^{-1}\left(\frac{2A_1^2 - B_1}{\sqrt{B_1^2 + 4A_1^2}}\right) + \sin^{-1}\left(\frac{B_1}{\sqrt{B_1^2 + 4A_1^2}}\right)\right]^2} (4) $ where $ A_1 = \sqrt{(T_e/T_w) (r) (0.2 M_e^2)} $ $ B_1 = (T_e/T_w) + A_1^2 - 1 $ $ constant (6)$ $ constant (6)$	$\left(\overline{\mathbf{U}}/\overline{\mathbf{U}}_{7}\right)\sqrt{\left(\overline{\mathbf{C}}_{\mathbf{f},\mathbf{C}}\right)/2} - \left(\overline{\mathbf{U}}/\overline{\mathbf{U}}_{7}\right)^{2}\left(0.2\ \mathrm{M_{e}}^{2}\right)\left(\overline{\mathbf{C}}_{\mathbf{f},\mathbf{C}}/2\right)\right)d\overline{z} \tag{9}$	Same as for Van Driest (II)
$\frac{\overline{Re}_{\theta}}{Re_{\theta}}$	$\frac{\mu_{\mathrm{e}}}{\mu'}$	$\frac{\mu_{\mathbf{e}}}{\mu_{\mathbf{w}}} \tag{7}$	$\frac{\mu_{\mathbf{C}}}{\mu_{\mathbf{C}}} \tag{10}$	$\frac{1}{(T_{\rm w}/T_{\rm e})^{0.702} (T_{\rm w}/T_{\rm aw})^{0.772}} $ (11)

Keyes' viscosity formula (Ref. 1) and the skin friction equation of Kármán-Schoenherr that were used in the calculations are given below:

$$\mu = 2.32 \times 10^{-8} \sqrt{T} \left(1 + \frac{220}{T} \cdot 10^{-\frac{9}{T}}\right)^{-1} \frac{\text{lb-sec}}{\text{ft}^2}$$

$$(12)$$

$$C_{f,\text{the}} = \frac{C_f/\overline{C}_f}{17.08 \left[\log_{10} \left(\text{Re}_{\theta,\text{exp}} \times \overline{\text{Re}}_{\theta}/\text{Re}_{\theta}\right)\right]^2 + 25.11 \log_{10} \left(\text{Re}_{\theta,\text{exp}} \times \overline{\text{Re}}_{\theta}/\text{Re}_{\theta}\right) + 6.012}$$

Table 3 Transformation functions for velocity profiles

	Wall Reference Temperature		Baronti and Libby ⁷	Van Driest ⁸				
$rac{\overline{v}}{\overline{v}_{ au}}$	$\frac{ ext{U/U_e}}{\sqrt{\left(ext{C_f}/2 ight)\left(ext{T_w/T_e} ight)}}$	(14)	$\begin{split} &\frac{\text{U/U_e}}{\sqrt{(\overline{C}_{f,BL}/2)}} \\ \text{where} \\ &\overline{C}_{f,BL} = (\rho_e \mu_e/\rho_w \mu_w) (\overline{\mu}/\sigma \mu_e) \ C_f \\ &(\sigma \mu_e/\overline{\mu}) = (\rho_f/\rho_e) (\mu_e/\mu_f) \Big\{ (T_w/T_e) + \left[1 + 0.2 \ \text{Me}^2 - (T_w/T_e)\right] \times \\ &\sqrt{(\overline{C}_{f,BL}/2)} (10.6/2) - 0.2 \ \text{Me}^2 \left(\overline{C}_{f,BL}/2) (10.6)^2/3 \Big\} \\ &T_f = T_e \Big\{ (T_w/T_e) + \left[1 + 0.2 \ \text{Me}^2 - (T_w/T_e)\right] \sqrt{(\overline{C}_{f,BL}/2)} (10.6) \\ &- 0.2 \ \text{Me}^2 \left(\overline{C}_{f,BL}/2\right) (10.6)^2 \Big\} \\ &\overline{C}_{f,BL} \text{ is obtained from Eqs. (19), (20) and (21) by iteration.} \end{split}$	(18) (19) (20) (21)	$\begin{split} \frac{1}{A\sqrt{(c_f/2)(T_w/T_e)}} & \begin{cases} \sin^{-1} \left[\frac{2A^2(U/U_e) - B}{\sqrt{B^2 + 4A^2}} \right] + \sin^{-1} \left(\frac{B}{\sqrt{B^2 + 4A^2}} \right) \end{cases} \\ \text{where} \\ & A = & \sqrt{(T_e/T_w)(0.2 \; M_e^2)} \\ & B = & (T_e/T_w) + A^2 - 1 \end{split}$	(25)		
$\frac{\overline{U}_{\tau}\overline{y}}{\overline{v}}$	$(U_{\mathrm{e}}/\nu_{\mathrm{w}})\Big[\sqrt{(C_{\mathrm{f}}/2)(T_{\mathrm{w}}/T_{\mathrm{e}})}\Big]y$	(15)	$(U_{\rm e}/\nu_{\rm e})\sqrt{(\overline{C}_{\rm f,BL}/2)}(\sigma\mu_{\rm e}/\overline{\mu})\int_0^{\rm y}(\rho/\rho_{\rm e}){\rm d}y$	(22)	$(U_e/\nu_w) \left[\sqrt{(C_f/2)(T_w/T_e)} \right] y$	(28)		
$\frac{\overline{\overline{U}} \sim \overline{\overline{U}}_{\underline{e}}}{\overline{\overline{U}}_{\tau}}$	$\frac{(U/U_{e}) - 1}{\sqrt{(C_{f}/2)(T_{w}/T_{e})}}$	(16)	$\frac{(U/U_0) - 1}{\sqrt{C_{f,BL}/2}}$	(23)	$\frac{1}{A\sqrt{(C_f/2)(T_W/T_e)}} \left\langle \sin^{-1} \left[\frac{2A^2(U/U_e) - B}{\sqrt{B^2 + 4A^2}} \right] - \sin^{-1} \left(\frac{2A^2 - B}{\sqrt{B^2 + 4A^2}} \right) \right\rangle$	(29)		
$\frac{\overline{y}}{\delta}$	$\frac{\mathbf{y}}{\delta}$	(17)	$\frac{\int_0^y (\rho/\rho_e) dy}{\int_0^b (\rho/\rho_e) dy}$	(24)	$\frac{\mathbf{y}}{\delta}$	(30)		

NOTE: Experimental values for $C_{\mathbf{f}}$ were used in above functions rather than theoretical values.

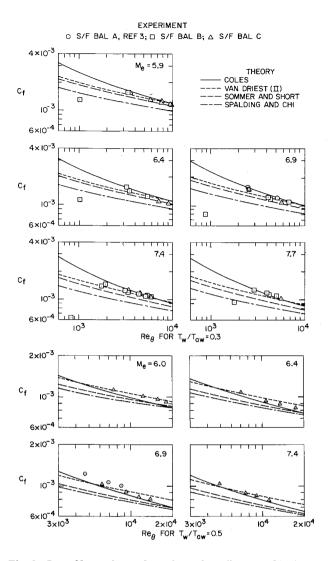


Fig. 3 Reynolds number and Mach number effects on skin friction. a) $T_w/T_{aw}=$ 0.3. b) $T_w/T_{aw}=$ 0.5.

In Fig. 4, skin-friction predictions from the finite-difference theory are compared with the experimental data and predictions from the Van Driest (II) theory. For both wall-temperature ratios, the finite-difference theory gave about the same variation of C_f with Re_θ as Van Driest's theory, but slightly underpredicted the skin friction.

At a given Mach number, the average of the algebraic sum of the differences between the experimental and theoretical skin friction taken from Figs. 3 and 4 is shown on a percentage basis in Fig. 5. Flags on the symbols represent the maximum deviations of individual points from the mean algebraic sum value, primarily caused by Reynolds number effects. In general, the Van Driest (II), Coles, and finite-difference theories appear to give the best predictions of skin friction within about $\pm 10\%$. Sommer and Short's theory underpredicted the skin friction from about 10-20%; whereas, Spalding and Chi's theory gave larger underpredictions up to nearly 40% depending upon the Mach number and wall-temperature ratio. At high Mach numbers, Cole's theory appears to be competitive with Van Driest (II)'s theory for skin-friction predictions; however, previously³ it had been found that at very high Reynolds numbers Coles' theory considerably underpredicted the experimental results.

Velocity Profiles

Measured velocity profiles are compared with those predicted by the finite-difference theory in Fig. 6. Typical results are shown for the highest Reynolds numbers at each Mach number and

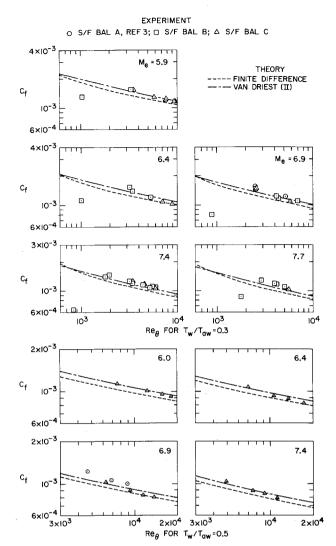


Fig. 4 Reynolds number and Mach number effects on skin friction. a) $T_w/T_{aw}=$ 0.3. b) $T_w/T_{aw}=$ 0.5.

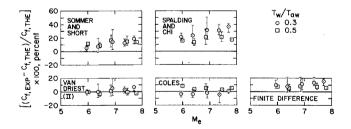
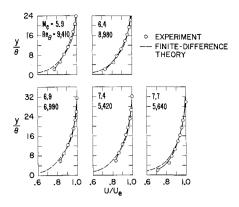



Fig.5 Mach number effects on difference between experimental and theoretical skin friction.

the two wall-temperature ratios ($T_{\rm w}/T_{\rm aw}=0.3$ and 0.5). The predicted profiles generally show good agreement with the measured profiles except for the experimental data closest to the wall. These data are expected to have the least experimental accuracy primarily due to wall-Pitot interference. Since the finite-difference theory gave a temperature distribution through the boundary layer similar to that known as the Crocco linear distribution with a unit Prandtl number, this theory would also give good predictions for the Mach number and Pitot-pressure profiles.

In Fig. 7 the effect of Reynolds number on the power-law exponent (N) is shown for all Mach numbers and the two wall-temperature ratios. For reference purposes, the Fenter¹² adiabatic-wall curve derived empirically from subsonic and

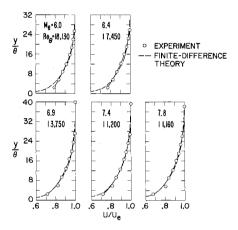


Fig. 6 Mach number effects on velocity profiles. a) $T_w/T_{aw}=0.3$. b) $T_w/T_{aw}=0.5$.

supersonic data is shown. The finite-difference band corresponds to equilibrium-flow conditions for all Mach numbers and the two wall-temperature ratios. At $Re_{\theta} \approx 7 \times 10^3$, the high values of N and the inconsistency of the experimental results indicate a possible nonequilibrium flow condition. This overshoot in the value of N has been investigated by Johnson and Bushnell¹³ using most previously existing data (including some of the present results at low $Re_{\theta} < 9 \times 10^3$). The present results extend the existing data to higher Re_{θ} 's where the data appear to be in dynamic equilibrium, no consistent effects of Mach number

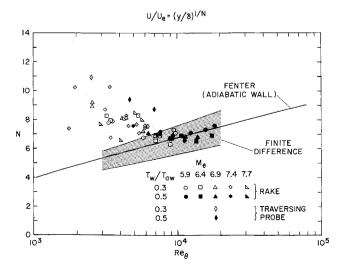


Fig. 7 Reynolds number effects on power-law exponent (N).

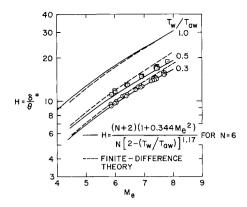


Fig. 8 Mach number and wall-temperature effects on shape factor (H); $2 \times 10^3 < Re_a < 18 \times 10^3$.

and/or wall-temperature ratio appearing within the experimental accuracy of determining N. For these values of Re_{θ} , the measured N and $N(Re_{\theta})$ generally agree with those predicted from the finite-difference theory. Fenter's adiabatic wall curve generally gives an average fairing through the finite-difference band.

The shape factor $(H=\delta^*/\theta)$ is shown for all the experimental results as a function of Mach number and wall-temperature ratio in Fig. 8. Because of the small Reynolds number range of the investigation, all results appear to correlate on the basis of these two variables. The finite-difference theory gives a good prediction for the effect of wall-temperature ratio and Mach number. This theory also predicts the adiabatic-wall curve $H(M_e)$, as empirically derived by Fenter. A modification to the Fenter equation for the adiabatic-wall case, $H=[(N+2)/N]\times (1+0.344\ M_e^2)$, by the empirically derived factor $1/[2-T_w/T_{aw}]^{1.17}$ gives the solid curves shown for the nonadiabatic-wall cases which agree well with experiment.

Six velocity profiles of Fig. 6 ($M_e = 6.0$, 6.9, and 7.8 at $T_w/T_{aw} = 0.3$ and 0.5) are transformed by each of three theories in Fig. 9. A comparison with the incompressible curve that Coles¹⁴ derived from experimental data indicates the adequacy of a given transformation for defining the outer part of the boundary layer. At $T_w/T_{aw} = 0.5$, only the Van Driest theory transforms the data reasonably close to the Coles' incompressible curve at all three Mach numbers. At $T_w/T_{aw} = 0.3$ for the two lowest Mach numbers, again only the Van Driest theory gives a reasonably good transformation. For $T_w/T_{aw} = 0.3$ at $M_e = 7.7$, none of the theories transforms the results to Coles' curve. The reason for poor transformations at M = 7.7 is believed to be attributed to the low Reynolds number of the data. Note the reasonably good transformation given by the Van Driest theory for $T_w/T_{aw}=0.5$ and $Re_\theta=11,160$ compared with a poor transformation for $T_w/T_{aw}=0.3$ and $Re_\theta=5,640$. In Fig. 7 at $M_e=7.7$, the velocity profile at $Re_\theta=5,640$ has a power-law factor of 8 which is significantly higher than the value of N=6.6 for the velocity profile at $Re_{\theta}=11,160$. The velocitydefect results, therefore, support the indications from the powerlaw results of Fig. 7 that the outer part of the boundary-layer profiles are possibly not in dynamic equilibrium.

No law-of-the-wall correlations are presented for the rake Pitot measurements because of probable inaccuracy and lack of data near the wall. However, the results from a single traversing pitot tube used to obtain Re_{θ} for the skin-friction experiment reported in Refs. 3 and 11 are presented in Fig. 10. The measurements were made on a flat-plate model of similar size and leading edge, but the model was sting supported rather than injected. Two velocity profiles are presented for the maximum Reynolds number available for $T_w/T_{aw} = 0.3$ and 0.5 and $M_e = 7$. Boundary-layer trips were used for these data because this model was not designed to withstand the higher wind tunnel pressures. Values of y, and U/U_e are listed in Table 4. A Crocco temperature distribution was assumed; how-

Table 4 Boundary-layer profile data

	Boundary-Layer Rake									Traversing Probe				
M_{Θ} Re_{θ} T_{W}/T_{aW} δ , cm θ , cm H	6.05 9,410 .30 1.12 .0508 9.94 7.0	6.39 8,980 .29 1.14 .0547 10.8 6.2	6.93 6,990 .30 1.14 .0467 12.64 6.9	7.42 5,420 .28 1.17 .0459 14.11 7.1	7.69 5,640 .29 1.22 .0522 15.2 7.9	6.04 18,130 .47 1.14 .0477 11.5	6.41 17,450 .49 1.17 .0468 13.0 6.9	6.91 13,750 .47 1.17 .0446 14.7 6.7	7.42 11,200 .46 1.22 .0453 16.7 6.5	7.80 11,160 .49 1.35 .0464 18.8 6.6	7.09 5,200 .32 1.52 .0598 13.6 7.5		5,200 8,8 .32 .51 1.52 1.5 .0598 .06 13.6 14.	
y, em						U U _e					y, em	$\frac{ ext{U}}{ ext{U}_{ ext{e}}}$	y, em	U U _e
0.114 .267 .419 .572 .752 .889 1.052 1.214	.776 .836 .875 .913 .948 .970 .988 .999	.730 .817 .848 .895 .933 .958 .979 .993	.777 .830 .866 .905 .942 .966 .984 .995	.787 .831 .863 .901 .937 .950 .977 .990	.709 .829 .853 .887 .918 .938 .956 .971	.792 .837 .877 .914 .947 .968 .986 .997	.770 .827 .864 .905 .941 .964 .984 .996	.714 .822 .861 .902 .938 .963 .982 .994	.714 .811 .848 .890 .928 .952 .973 .988	.677 .805 .837 .877 .914 .938 .960 .977	.170 .279 .396 .475 .518 .640 .676 .770	.789 .833 .860 .884 .894 .916 .923 .936	.117 .254 .358 .516 .602 .737 .856 .986	.722 .774 .799 .847 .867 .892 .913 .932
											.942 1.013 1.064 1.118 1.252 1.306 1.455	.955 .961 .966 .972 .983 .986 .993	1.262 1.369 1.491 1.760 2.253 2.520	.965 .974 .982 .995 .999

THEORY APPLIED TO EXP

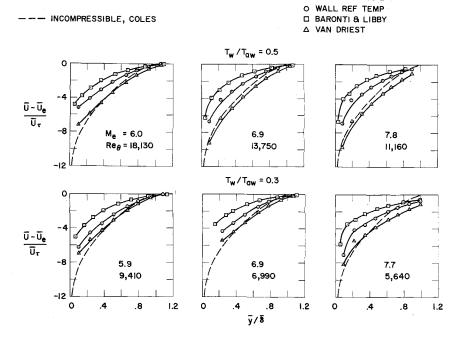


Fig. 9 Velocity-defect law; boundary-layer rake data.

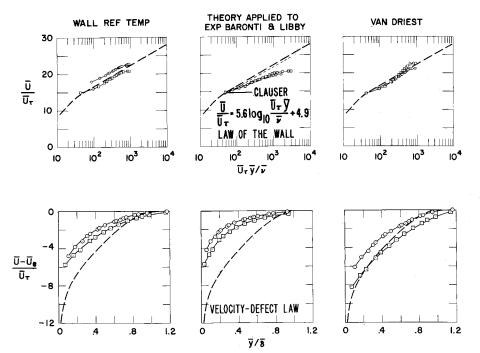


Fig. 10 Velocity-profile correlatios; traversing probe data, $M_e = 7$.

ever, total temperatures were measured and they agreed with the Crocco relation.³ In Fig. 10, the T_w method does not correlate the law-of-the-wall velocity profiles for the effect of wall-temperature ratio, $T_{\rm w}/T_{\rm aw}$, and does not give the proper transformation for the velocity-defect correlation. The Baronti-Libby method correlates the effect of wall-temperature ratio for the law-of-the-wall curve but does not transform the velocity profiles onto either Coles' incompressible law-of-the-wall or the velocity-defect curves. The law-of-the-wall correlation is similar to the correlations reported previously 15,16 for adiabatic-wall data at M = 6 in that the slope is less than that for the Coles' curve (or the Clauser curve used by Baronti and Libby⁷), and there is no distinguishable wake part of the curve as exists at low Mach number. However, if the Baronti-Libby transformation is used to obtain skin friction from the velocity profiles (the Clauser technique) the friction would be within about 5% of the measured values provided the lower part of the law-of-the-wall portion $(\overline{U}_{\tau}\overline{y}/v \simeq 10^2)$ is used with the Clauser incompressible curve. The Van Driest method transforms the velocity profiles close to Coles' incompressible law-of-the-wall and the velocitydefect curves.

Conclusions

Four transformation theories (Sommer and Short, Spalding and Chi, Van Driest (II), and Coles), and a finite-difference theory for predicting turbulent skin friction were evaluated on the basis of skin friction directly measured on a flat plate at two different wall-temperature ratios ($T_w/T_{aw}=0.3$ and 0.5) and at Mach numbers ranging from 5.9–7.8. In general, the Van Driest (II), Coles, and finite-difference theories predicted the skin friction within about $\pm 10\%$, but the other theories gave much larger underpredictions. Some evidence was cited previously to indicate that Coles' theory may be deficient at high Reynolds numbers; therefore, the choice of this theory should await additional experimental results.

The finite-difference theory gave a good representation of the measured velocity profiles and the power-law exponent provided the Reynolds number was high enough to permit equilibrium-flow conditions. This theory also gave a good prediction of the

shape factor for all flow conditions. An empirical equation was derived for calculating the effects of Mach number and wall-temperature ratio $(T_{\rm w}/T_{\rm aw})$ on the shape factor.

The Van Driest theory gave the most satisfactory transformations of the velocity-profile data onto the incompressible law-ofthe-wall and velocity-defect curves.

Appendix: Finite-Difference Program

For the finite-difference program, the equations and method of solution were similar to those developed by Blottner. A variable grid system so for the boundary-layer coordinate was used, and the eddy-viscosity models recently presented by Cebeci swere employed to describe the turbulent transport processes. The turbulent Prandtl number presented some difficulty, since reliable values have not yet been established; however, a value of 0.9 was found to yield satisfactory results. 20

The major problems developed from the use of a Crank-Nicolson type finite-difference scheme and the need for multiple iterations to obtain converged eddy viscosities. The Crank-Nicolson scheme exhibited an instability in the transition region between the laminar sublayer and the law-of-the-wall region. For laminar boundary layers there was no difficulty with instability, and it is believed that the instability was caused by the non-linearity introduced by the eddy viscosity. It was found that the use of a full-implicit scheme (more stable than Crank-Nicolson scheme) completely removed this problem. The iteration was required because of the linearization used in the calculation of the eddy viscosity in the equation of motion. Three to four iterations were required before converged values of velocity and enthalpy were obtained.

A significant difficulty with the use of any turbulent boundary-layer finite-difference scheme is the need for initial conditions to start the calculation. For the present calculation the initial guess for the velocity profile consisted of a laminar sublayer combined with an outer velocity profile from a one-seventh power law. The height at which these two assumed profiles gave the same velocity was taken as the laminar

sublayer thickness. The characteristics of the velocity profiles were determined by estimates of the wall shear and boundary-layer thickness. If the initial estimates were found to be incorrect, new ones were made based on the computed solutions, and a new solution was then calculated. The initial profiles for the total enthalpy was obtained by assuming a Crocco relationship, and this guess relaxed within a few steps to the correct non-Crocco profile (the laminar Prandtl number was taken to be 0.723). In general, it was found that converged solutions could be obtained after two guesses for the initial skin-friction and boundary-layer thickness; the average computer time for one calculation on an IBM 7094 computer was $3\frac{1}{2}$ min.

References

¹ Bertram, M. H., "Comment on 'Viscosity of Air'," *Journal of Spacecraft and Rockets*, Vol. 4, No. 2, Feb. 1967, pp. 287–288.

² Spalding, D. B. and Chi, S. W., "The Drag of a Compressible Turbulent Boundary Layer on a Smooth Flat Plate With and Without Heat Transfer," *J. Fluid Mechanics*, Vol. 18, Pt. 1, Jan. 1964, pp. 117–143.

³ Hopkins, E. J., Inouye, M., Rubesin, M. W., Keener, E. R., Mateer, G. G., and Polek, T. E., "Summary and Correlation of Skin-Friction and Heat-Transfer Data for a Hypersonic Turbulent Boundary Layer on Simple Shapes," TN D-5089, 1969, NASA.

⁴ Coles, D., "The Turbulent Boundary Layer in a Compressible Fluid," *The Physics of Fluids*, Vol. 7, No. 9, Sept. 1964; also Rept. R-403-PR, 1962, Rand Corp.

⁵ Van Driest, E. R., "The Problem of Aerodynamic Heating," Aeronautical Engineering Review, Vol. 15, No. 10, Oct. 1956, pp. 26–41.

⁶ Sommer, S. C. and Short, B. J., "Free-Flight Measurements of Turbulent-Boundary Layer Skin Friction in the Presence of Severe Aerodynamic Heating at Mach Numbers From 2.8 and 7.0," TN 3391, 1955, NACA; also *Journal of Aeronautical Sciences*, Vol. 23, No. 6, June 1956.

⁷ Baronti, P. O. and Libby, P. A., "Velocity Profiles in Turbulent Compressible Boundary Layers," *AIAA Journal*, Vol. 4, No. 2, Feb. 1966, pp. 193–202.

⁸ Van Driest, E. R., "Turbulent Boundary Layer in Compressible Fluids," *Journal of Aeronautical Sciences*, Vol. 18, No. 3, March 1951, pp. 145–160.

⁹ Ames Research Staff, "Equations, Tables, Charts for Compressible

Flow," Rept. 1135, 1953, NACA.

¹⁰ Bushnell, D. M., Johnson, C. B., Harvey, W. D., and Feller, E. V., "Comparison of Prediction Methods and Studies of Relaxation in Hypersonic Turbulent Boundary Layers," TN D-5433, 1969, NASA.

¹¹ Hopkins, E. J., Keener, E. R., and Louie, P. T., "Direct Measurements of Turbulent Skin Friction on a Nonadiabatic Flat Plate at Mach Number 6.5 and Comparison With Eight Theories," TN D-5675, 1970, NASA.

¹² Fenter, F. W., "A New Analytical Method for the Prediction of Turbulent Boundary Layer Characteristics on a Thermally-Insulated Flat Plate at Supersonic Speeds," Rept. DRL-343, CR-2095, 1954, Defense Research Lab., Univ. of Texas, p. 25.

¹³ Johnson, C. B. and Bushnell, D. M., "Power-Law Velocity-Profile-Exponent Variations With Reynolds Number, Wall Cooling, and Mach Number in a Turbulent Boundary Layer," TND-5753, 1970, NASA.

¹⁴ Coles, D., "Measurements in the Boundary Layer on a Smooth Flat Plate in Supersonic Flow. I. The Problem of the Turbulent Boundary Layer," Rept. 20-69, 1953, Jet Propulsion Lab., Calif. Inst. of Technology, Pasadena, Calif.

¹⁵ Watson, R. D. and Cary, A. M., "Transformation of Hypersonic Turbulent Boundary Layers to Incompressible Form," *AIAA Journal*, Vol. 5, No. 6, June 1967, pp. 1202–1203.

¹⁶ Bertram, M. H., Cary, A. M., Jr., and Whitehead, A. H., Jr., "Experiments With Hypersonic Turbulent Boundary Layers on Flat Plates and Delta Wings," AGARD Specialists' Meeting on Hypersonic Boundary Layers and Flow Fields, London, England, May 1–3, 1968.

¹⁷ Blottner, F., "Finite Difference Methods of Solution of the Boundary Layer Equations," *AIAA Journal*, Vol. 8, No. 2, Feb. 1970, pp. 193–205.

¹⁸ Smith, A. M. O. and Cebeci, T., "Numerical Solution of the Turbulent-Boundary Layer Equations," DAC 33735, May 1967, Douglas Aircraft Div., Long Beach, Calif.

¹⁹ Cebeci, T., "Calculation of Compressible Turbulent Boundary Layers with Heat and Mass Transfer," *AIAA Journal*, Vol. 9, No. 6,

June 1971, pp. 1091–1097.

²⁰ Bushnell, D. M. and Beckwith, I. D., "Calculation of Non-equilibrium Hypersonic Turbulent Boundary Layers and Comparisons With Experimental Data," *AIAA Journal*, Vol. 8, No. 8. Aug. 1970, p. 1462.